Tetrahedron: Asymmetry 12 (2001) 357-360

New methodology for the synthesis of enantiopure (3R,2aR)-(-)-3-phenyl-hexahydro-oxazolo[3,2-a]-pyridin-5-one: a synthesis of (S)-(+)-coniine

J. L. Terán, a D. Gnecco, A. A. Galindo, J. Juárez, S. Bernès and R. G. Enríquez

^aCentro de Química del Instituto de Ciencias, BUAP, 14 Sur 6303, C.P. 72570, Ciudad Universitaria Puebla, Pue., Mexico ^bInstituto de Química, Universidad Nacional Autónoma de México, D.F. Mexico

Received 12 December 2000; accepted 22 January 2001

Abstract—A new and efficient methodology for the enantiopure synthesis of (3R,2aR)-(-)-3-phenyl-hexahydro-oxazolo[3,2-a]pyridin-5-one **3** starting from (1'R)-(-)-1-(2'-hydroxy-1'-phenyl-ethyl)-(1H)-pyridin-2-one **1** is described. In addition, the enantiospecific synthesis of (S)-(+)-coniine hydrochloride **6** in good yield from **3** is reported. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Chiral hexahydro-oxazolo[3,2-a]pyridin-5-ones are widely used in the formation of C–C bonds α - to nitrogen. The preparation, reactivity and application of these compounds in the asymmetric synthesis of alkaloids and piperidine derivatives¹⁻³ have been thoroughly studied. We have previously reported⁴ the synthesis of enantiopure (1H)-pyridin-2-ones from chiral nonracemic pyridinium salts. Considering the ease with which these compounds are obtained, we decided to explore the utility of (1'R)-(-)-1-(2'-hydroxy-1'-phenylethyl)-1H-pyridin-2-one 1 in the preparation of 3-phenyl-hexahydro-oxazolo[3,2-a]pyridin-5-one. For this purpose, we carried out three different reductions⁵ of 1, using L-selectrideTM, PtO₂/ H_2 and LiAl H_4 .

The most efficient reduction of (1'R)-(-)-1-(2'-hydroxy-1'-phenyl-ethyl)-(1H)-pyridin-2-one **1** was seen with L-selectrideTM (3 equivalents) in THF solvent (Scheme 1). The reaction took 4 hours at room temperature. Using these conditions and after purification by column chromatography over silica (dichloromethane/ethylacetate) the (1'R)-(-)-1-(2'-hydroxy-1'-phenyl-ethyl)-3,4-dihydro-(1H)-pyridin-2-one **2** was obtained in 85% yield. Product **2** had satisfactory spectroscopic data.

Unexpectedly, when the ¹H NMR of **2** was recorded after standing for 12 hours in CDCl₃, its transformation to the corresponding 3-phenyl-hexahydro-oxa-

Suitable crystals of **2** were obtained from an ether/*n*-hexane mixture and X-ray diffraction analysis was performed. Atom C-(4) is disordered over two sites (A and B); nevertheless, bond lengths C-(3)–C-(4A) and C-(3)–C-(4B), at 1.446 (16) and 1.380 (15), respectively, were consistent with a single bond, while the C-(5)–C-(6) distance of 1.298 (5) has double bond character. The C-(2)–O-(1) bond length of 1.232 (4) is characteristic of a carbonyl group⁸ (Fig. 1).

In order to explore this transformation, we prepared a solution of 2 in CHCl₃ containing a catalytic amount of

Scheme 1.

zolo[3,2-a]pyridin-5-one in a 15% yield was observed. It is well known that CDCl₃ normally contain traces of DCl and it was thought that this could explain the observed transformation.

^{*} Corresponding author. E-mail: dgnecco@siu.cen.buap.mx

Figure 1. Crystal structure of **2**. Thermal ellipsoids are at 30% probability level. Disordered position for C-(4) was omitted for clarity.

dry HCl gas. This solution was stirred for 6 hours at 25°C and a single product was formed with $R_f = 0.76$ (R_f of 2 was 0.20 on SiO₂ in the same CH₂Cl₂/MeOH, 19:1 eluent). The solution was dried over anhydrous Na₂SO₄, filtered and the solvent removed in vacuo affording 3 in quantitative yield. 9 Both ¹H and ¹³C NMR data of the crude reaction showed only one compound, in agreement with the single product observed by TLC analysis. Assignments in ¹H NMR were confirmed by extensive use of ¹³C–¹H shift correlation experiments and the configuration of the new stereogenic centre C-(2a) in 3 was assigned by ¹H NMR 1D NOE and ROESY experiments, which showed that H-(3) and H-(2a) had a cis relationship; these results allowed us to assign the stereochemistry of 3 as cis-C-(3R)/C-(2aR) as shown in Fig. 2. However, this compound had identical spectral data with those reported by $Husson^{2c}$ for the *trans-(3R,2aS)-(-)-3-*phenylhexahydro-oxazolo[3,2-a]pyridin-5-one. 10

These contradictions stimulated our interest and prompted us to carry out the synthesis of a coniine enantiomer, which is accepted as a standard for the demonstration of chiral methodology. The synthesis

Scheme 2.

was performed in three steps from **3** affording (*S*)-(+)-coniine hydrochloride **6** exclusively in good yield.¹⁻³ The first step was the reaction of **3** with 3 equivalents of *n*-propylmagnesium chloride in THF;¹¹ the reaction was carried out at 0°C; and was complete after 6 hours. After purification by column chromatography over silica (dichloromethane/ethylacetate), (1'*R*,6*S*)-(+)-1-(2'-hydroxy-1'-phenyl-ethyl)-6-propyl-piperidin-2-one **4**¹² was afforded in 85% yield. The ¹H and ¹³C NMR spectra of the crude reaction mixture of **4** showed that only one product had formed. Assignments in ¹H NMR were confirmed by the extensive use of ¹³C-¹H shift correlation experiments (Scheme 2).

As shown in Scheme 3, the second step of the synthesis was the lithium aluminium hydride reduction of 4 which was completed under reflux in 1 hour, and afforded (2R,2'S)-(+)-2-phenyl-2-(2'-propyl-piperidin-1'-yl)-ethanol 5^{13} in 90% yield after purification by column chromatography over silica (n-hexane/ethylacetate). Assignments from the 1H NMR spectrum of 5 were again confirmed by use of ^{13}C - 1H shift correlation experiments.

In the third step, **5** was subjected to hydrogenolysis in ethanolic solution, in the presence of 10% Pd-C/HCl, at 30° C over 48 hours, affording (2S)-(+)-coniine hydrochloride **6**¹⁴ in a 90% yield.

This reaction sequence described for the synthesis of coniine indicates that in the first step, the oxazolo opening of 3 by n-propylmagnesium chloride proceeds with complete inversion¹¹ at C-(2aR) via an S_N 2 mechanism. Such an interpretation is in agreement with the enantiomerically pure (S)-(+)-coniine 6 obtained.

$$H_{2a}$$
 H_{2a} H_{2a} H_{3} H_{7} H_{8} H_{7} H_{7} H_{8} H

Figure 2. Selected NOE and ROESY of 3.

Scheme 3.

2. Conclusion

A simplified method allowing the preparation of (1'R)-(-)-1-(2'-hydroxy-1'-phenyl-ethyl)-3,4-dihydro-(1H)pyridin-2-one **2** in 85% yield from enantiopure (1H)-pyridin-2- one **1** has been developed. The structure of **2** was confirmed by X-ray crystal study. A new and facile methodology for the synthesis of enantiopure (3R,2-aR)-(-)-3-phenyl-hexahydro-oxazolo[3,2-a]pyridin-5-one **3** in quantitative yield from **2** is also presented.

Finally, (S)-(+)-coniine was efficiently prepared in five steps and 59% overall yield from 1. These results have potential use in the total synthesis of this class of alkaloid, and are currently under investigation in our laboratory.

Acknowledgements

D.G. and A.G. are grateful for financial support from CONACyT-México (Project 28906N). T.J.L. thanks CONACyT for a doctoral scholarship #112584.

References

- (a) Hiemstra, H.; Speckamp, W. N. Tetrahedron 1985, 41, 4367; (b) Meyers, A. I.; Brengel, G. P. Chem. Commun. 1997, 1; (c) Kiguchi, T.; Nakazono, Y.; Kotera, S.; Ninomiya, I.; Naito, T. Heterocycles 1990, 31, 1525.
- (a) Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 70, 54–59; (b) Husson, H.-P.; Royer, J. Advances in the Use of Synthons in Organic Chemistry; JAI Press, 1995; Vol. 2, pp. 1–68; (c) Royer, J.; Husson, H.-P. Heterocycles 1993, 36, 11493–11496; (d) Micouin, L.; Varea, T.; Riche, C.; Chiaroni, A.; Quirion, J.-C.; Husson, H.-P. Tetrahedron Lett. 1994, 35, 2529–2532.
- (a) Amat, M.; Llor, N.; Bosch, J. Tetrahedron Lett. 1994,
 35, 2223–2226; (b) Amat, M.; Llor, N.; Hidalgo, J.;
 Hernández, A.; Bosch, J. Tetrahedron: Asymmetry 1996,
 7, 977–980.
- Gnecco, D.; Marazano, C.; Enríquez, R. G.; Terán, J. L.; Sánchez, M.; Galindo, A. Tetrahedron: Asymmetry 1998, 9, 2027–2029.
- 5. The reduction of 1 with, PtO₂/H₂ afforded quantitatively the 1-(2-hydroxy-1-phenyl-ethyl)-piperidin-2-one, while with LiAlH₄ a complex mixture was obtained.
- Mabic, S.; Castagnoli, Jr., N. J. Org. Chem. 1996, 61, 309–313.

- 7. Compound **2**. Crystallised from ether/*n*-hexane. $R_{\rm f}$ =0.20 (SiO₂, CH₂Cl₂/MeOH, 95/5); mp 76–78°C; [α]_D²⁰ –49 (c1.0, CH₂Cl₂). IR (KBr, cm⁻¹): 3450–3300, 2960, 1658; ¹H NMR (400 MHz): δ (ppm, CDCl₃, J Hz): 7.35–7.26 (ϕ -H, 5H, m); 6.02 (H-6, dt, 7.70, 1.47); 5.82 (H-1′, dd, 8.43, 5.13); 5.16 (H-5, dt, 8.08, 4.40); 4.17–3.99 (2H-2′, AB system, 8.43, 5.13); 2.62 (2H-3, td, 8.10, 4.80); 2.32 (2H-4, m). ¹³C NMR: C-(2), 171.15; C-(7), 137.07; 2C-(8), 128.86; C-(10), 127.96; 2C-(9), 127.65; C-(6), 126.48; C-(5), 107.24; C-(2′), 62.77; C-(1′), 57.38; C-(3), 31.79; C-(4), 19.98.
- 8. Crystal structure of **2**. Colourless, irregular crystal, $0.34 \times 0.18 \times 0.10 \text{ mm}^3$, $C_{13}H_{15}NO_2$, orthorhombic, $P2_12_12_1$, a=8.5603(8), b=10.7338(13), c=12.4368(16) Å, Z=4. Bruker P4 diffractometer using Mo K α radiation, T=298(2) K, 2827 reflections measured up to $2\theta=50^\circ$, 2013 independent data ($R_{\text{int}}=3.56\%$) for 155 refined parameters. The structure was refined on the basis of nonabsorption-corrected data, using standard methods¹⁵ without restraints or constraints. Final R indices: $R_1=5.61\%$ for 1246 data having $F_0>4\sigma$ (F_0) and $wR_2=14.18\%$ for all data.
- 9. Compound **3**. Viscous oil (volatile in vacuo); R_f =0.76 (SiO₂, CH₂Cl₂/MeOH, 95/5); [α]_D²⁰ -92 (c 1.0, CH₂Cl₂), [(lit.^{2c} [α]_D²⁰ -88 (c 0.6, CH₂Cl₂)]. IR (KBr, cm⁻¹): 3450–3400, 2954, 1660; ¹H NMR (400 MHz): δ (ppm, CDCl₃, J Hz): 7.33–7.25 (ϕ H, 5H, m); 5.26 (H-3, dd, 8.07, 7.70); 5.00 (H-2a, dd, 4.77, 4.40); 4.48 (H-2, dd, 8.07, 7.70); 3.74 (H-2, dd, 8.07, 7.70); 2.52 (H-6, dd, 18.33, 5.87); 2.37 (H-8, m); 2.31 (H-6, dd, 6.60, 5.13); 1.95 (H-8, m); 1.76 (H-7, m); 1.54 (H-7, m). ¹³C NMR: C-(5), 169.07; C-(9), 139.64; 2C-(11), 128.87; C-(12), 127.67; 2C-(10), 126.18; C-(2a), 88.77; C-(2), 72.54; C-(3), 58.21; C-(6), 31.39; C-(8), 28.53; C-(7), 17.21.
- 10. Amat, M. and co-workers also reported this compound. See Ref. 3a,b. However, the authors obtained the (*R*)-(–)-coniine from 3 when the alkylation was carried out with allylic silanes in the presence of a Lewis acid.
- 11. Yamazaki, N.; Kibayashi, Ch. *Tetrahedron Lett.* **1997**, 38, 4623–4626 and references cited therein.
- 12. Compound **4.** Viscous oil; $R_{\rm f} = 0.25$ (Al₂O₃, CH₂Cl₂/MeOH, 98/2); $[\alpha]_{\rm D}^{20} + 21.0$ (c 1.0, CH₂Cl₂). IR (KBr, cm⁻¹): 3550–3380, 2925, 1640; $^{1}{\rm H}$ NMR (400 MHz): δ (ppm, CDCl₃, J Hz): 7.33–7.22 (ϕ -H, 5H, m); 5.24 (H-1', dd, 7.70, 4.77); 4.21 (2H-2', AB, 24.56, 4.77); 3.21 (H-6, m); 2.56 (2H-3, dd, 8.43, 5.87); 1.85 (H-4, m); 1.74 (H-4, m); 1.55 (2H-5, m); 1.52 (H-7, m); 1.28 (H-8, m); 1.25 (H-7, m); 1.10 (H-8, m); 0.83 (3H-9, t, 7.33). $^{13}{\rm C}$ NMR: C-(2), 172.68; C-(10), 137.38; 2C-(11), 128.58; 2C-(12),

- 127.80; C-(13), 127.56; C-(2'), 64.0; C-(1'), 63.37; C-(6), 56.42; C-(3), 35.39; C-(4), 31.83; C-(7), 25.73; C-(8), 19.54; C-(5), 16.24; C-(9), 13.91.
- 13. Compound **5**. Viscous oil; $R_{\rm f}{=}0.63~({\rm Al_2O_3},~{\rm CH_2Cl_2}/{\rm MeOH},~98/2)$. [α] $_{\rm D}^{20}{}+17~(c~1.0,~{\rm CH_2Cl_2})$. IR (KBr, cm $^{-1}$): $3650{-}3200,~2930,~1061;~^{1}{\rm H}~{\rm NMR}~(400~{\rm MHz})$: $\delta~({\rm ppm},~{\rm CDCl_3},~J~{\rm Hz})$: $7.35{-}7.28~({\rm \phi}{-}{\rm H},~5{\rm H},~{\rm m})$; $3.88~({\rm H}{-}2,~{\rm dd},~6.23,~5.87)$; $3.77~(2{\rm H}{-}1,~{\rm AB},~30.08,~6.60)$; $2.95~({\rm H}{-}2',~{\rm m})$; $2.62~(2{\rm H}{-}6',~{\rm AB},~44.76,~10.26)$; $1.85~({\rm H}{-}7',~{\rm m},~3.30)$; $1.68~({\rm H}{-}3',~{\rm m})$; $1.56{-}1.48~({\rm H}{-}7',~2{\rm H}{-}5',~2{\rm H}{-}4',~{\rm m})$; $1.42~({\rm H}{-}3',~{\rm m})$; $1.25~(2{\rm H}{-}8',~{\rm m})$; $0.86~(3{\rm H}{-}9',~{\rm t},~7.33)$. $^{13}{\rm C}~{\rm NMR}$: C-(3), 135.20; C-(4), 128.81; C-(5), 128.50; C-(6), 127.73; C-(2), 67.53; C-(1), 62.09; C-(2'), 57.58; C-(6'), 43.46;
- C-(5'), 27.28; C-(7'), 25.42; C-(4'), 20.34; C-(8'), 20.33; C-(3'), 19.50; C-(9'), 14.38.
- 14. (*S*)-(+)-Coniine·6HCl. [α]_D²⁰ +6.3 (*c* 1.0, EtOH), [(lit.¹¹ [α]_D²⁶ +6.2 (*c* 0.40 EtOH)]. Mp 212–214°C, [(lit.¹¹ mp 219–221°C)]. IR (KBr, cm⁻¹): 2950, 2848, 1587, 1454, 1387; ¹H NMR (400 MHz): δ (ppm, CDCl₃, *J* Hz): 3.45 (H-6, dd, 12.83, 3.30); 2.94 (H-2, m); 2.83 (H-6, td, 12.83, 3.30); 2.01–1.38 (2H-7, 2H-3, 2H-4, 2H-5, 2H-8, m); 0.95 (3H-9, t, 7.33). ¹³C NMR: C-(2), 57.18; C-(6), 44.79; C-(7), 35.39; C-(3), 28.16; C-(5), 22.46; C-(4), 22.22; C-(8), 18.61; C-(9), 13.78.
- 15. Sheldrick, G. M. SHELX-97 User's Manual, University of Göttingen, Germany, 1997.